1 You are given that $\mathrm{f}(x)=(x+3)(x-2)(x-5)$.
(i) Sketch the curve $y=\mathrm{f}(x)$.
(ii) Show that $\mathrm{f}(x)$ may be written as $x^{3}-4 x^{2}-11 x+30$.
(iii) Describe fully the transformation that maps the graph of $y=\mathrm{f}(x)$ onto the graph of $y=\mathrm{g}(x)$, where $\mathrm{g}(x)=x^{3}-4 x^{2}-11 x-6$.
(iv) Show that $\mathrm{g}(-1)=0$. Hence factorise $\mathrm{g}(x)$ completely.

Fig. 12
Fig. 12 shows the graph of a cubic curve. It intersects the axes at $(-5,0),(-2,0),(1.5,0)$ and $(0,-30)$.
(i) Use the intersections with both axes to express the equation of the curve in a factorised form.
(ii) Hence show that the equation of the curve may be written as $y=2 x^{3}+11 x^{2}-x-30$.
(iii) Draw the line $y=5 x+10$ accurately on the graph. The curve and this line intersect at $(-2,0)$; find graphically the x-coordinates of the other points of intersection.
(iv) Show algebraically that the x-coordinates of the other points of intersection satisfy the equation

$$
2 x^{2}+7 x-20=0
$$

Hence find the exact values of the x-coordinates of the other points of intersection.

3 You are given that $\mathrm{f}(x)=(2 x-3)(x+2)(x+4)$.
(i) Sketch the graph of $y=\mathrm{f}(x)$.
(ii) State the roots of $\mathrm{f}(x-2)=0$.
(iii) You are also given that $\mathrm{g}(x)=\mathrm{f}(x)+15$.
(A) Show that $\mathrm{g}(x)=2 x^{3}+9 x^{2}-2 x-9$.
(B) Show that $\mathrm{g}(1)=0$ and hence factorise $\mathrm{g}(x)$ completely.

4 You are given that $\mathrm{f}(x)=(x+2)^{2}(x-3)$.
(i) Sketch the graph of $y=\mathrm{f}(x)$.
(ii) State the values of x which satisfy $\mathrm{f}(x+3)=0$.

5 A cubic curve has equation $y=\mathrm{f}(x)$. The curve crosses the x-axis where $x=-, \frac{1}{2}$ and 5 .
(i) Write down three linear factors of $\mathrm{f}(x)$. Hence find the equation of the curve in the form $y=2 x^{3}+a x^{2}+b x+c$.
(ii) Sketch the graph of $y=\mathrm{f}(x)$.
(iii) The curve $y=\mathrm{f}(x)$ is translated by $\binom{0}{-8}$. State the coordinates of the point where the translated curve
intersects the y-axis.
(iv) The curve $y=\mathrm{f}(x)$ is translated by $\binom{3}{0}$ to give the curve $y=\mathrm{g}(x)$.

Find an expression in factorised form for $\mathrm{g}(x)$ and state the coordinates of the point where the curve $y=\mathrm{g}(x)$ intersects the y-axis.

